[*] [*] [*] [*]
Previous: Model vorticity budget on
Next: About this document ...
Up: No Title

Get the PS or PDF version here




Bibliography

Abramopoulos, 1988
ABRAMOPOULOS, F., 1988:.
Generalized energy and potential enstrophy conserving finite difference schemes for the shallow water equations.
Monthly Weather Review, 116 :650-662.

Adcroft et al. , 1997
ADCROFT, A., HILL, C., AND MARSHALL, D., 1997:.
Representation of topography by shaved cells in a height coordinate ocean model.
Monthly Weather Review, 125 :2293-2315.

Adcroft and Marshall, 1998
ADCROFT, A. AND MARSHALL, D., 1998:.
How slippery are piecewise constant coastlines in numerical ocean models.
Tellus, 50 A :95-108.

Adcroft et al. , 1998
ADCROFT, A. J., HILL, C. N., AND MARSHALL, J. ., 1998:.
A new treatment of the Coriolis terms in C-grid models at both high and low resolutions.
Monthly Weather Review, 127 :1928-1936.

Arakawa, 1966
ARAKAWA, A., 1966:.
Computational design for long-term numerical integration of the equations of fluid motion: Two-dimensional incompressible flow. part 1.
J. Comput. Physics, 1 :119-143.

Arakawa and Hsu, 1990
ARAKAWA, A. AND HSU, Y.-J. G., 1990:.
Energy conserving and potential dissipating schemes for the shallow water equations.
Monthly Weather Review, 118 :1960-1969.

Arakawa and Lamb, 1977
ARAKAWA, A. AND LAMB, V. R., 1977:.
Computational design of the basic dynamical processes of the UCLA general circulation model.
Methods in Computational Physics, 17 :174-267.

Arnold et al. , 1984
ARNOLD, D., BREZZI, F., AND FORTIN, M., 1984:.
A stable finite element for the stokes equation.
Calcolo, 23 :337-344.

Babuska, 1971
BABUSKA, I., 1971:.
Error bounds for finite elements methods.
Numer. Math., 16 :322-333.

Bartello, 1995
BARTELLO, P., 1995:.
Geostrophic adjustment and inverse cascades in rotating stratified turbulence.
J. Atmos. Sci., 52 :4410-4428.

Bartello and Thomas, 1996
BARTELLO, P. AND THOMAS, S. J., 1996:.
The cost-effectiveness of semi-Lagrangian advection.
Monthly Weather Review, 124 :2883-2897.

Batteen and Han, 1981
BATTEEN, M. L. AND HAN, Y.-J., 1981:.
On the computational noise of finite-difference schemes used in ocean models.
Tellus, 33 :387-396.

Beckers, 1999
BECKERS, J.-M., 1999:.
On some stability properties of the discretization of damped propagation of shallow water inertia-gravity waves on the Arakawa B-grid.
Ocean Modelling, 1 :53-69.

Beletsky et al. , 1997
BELETSKY, D., O'CONNOR, W. P., DAVID J. SCHWAB, AND DIETRICH, D. E., 1997:.
Numerical simulation of internal Kelvin waves and coastal upwelling fronts.
J. Phys. Oceanogr., 27 :1197-1215.

Blayo and Debreu, 1999
BLAYO, E. AND DEBREU, L., 1999:.
Adaptive mesh refinement for finite-difference ocean models: First experiments.
J. Phys. Oceanogr., 29 :1239-1250.

Bleck, 1978
BLECK, R., 1978:.
Simulation of coastal upwelling frontogenesis with an isopycnic coordinate model.
J. Geophys. Res., 83 :6163-6172.

Bleck and Boudra, 1981
BLECK, R. AND BOUDRA, D. B., 1981:.
Initial testing of a numerical ocean circulation model using a hybrid quasi-isopycnal vertical coordinate.
J. Phys. Oceanogr., 11 :755-770.

Blumberg and Herring, 1987
BLUMBERG, A. AND HERRING, H., 1987:.
Circulation modelling using orthogonal curvilinear coordinates.
In NIHOUL, J. AND JAMART, B., editors, Three-Dimensional Models of Marine and Estuarine Dynamics, volume 45, pages 55-88. Elsevier Oceanography Series.

Blumberg and Mellor, 1983
BLUMBERG, A. AND MELLOR, G., 1983:.
Diagnostic and prognostic numerical circulation studies of the south atlantic bight.
J. Geophys. Res., 88 :4579-4592.

Boulanger and Fu, 1996
BOULANGER, J.-P. AND FU, L.-L., 1996:.
Evidence of boundary reflection of Kelvin and first-mode Rossby waves from the TOPEX/POSEIDON sea level data.
J. Geophys. Res., 101 :16361-16371.

Brezzi, 1974
BREZZI, F., 1974:.
On the existence, uniqueness and approximation of saddle point problems arising from Lagrangian multipliers.
RAIRO, Anal. Num., 8((R2)) :129-151.

Bryan, 1963
BRYAN, K., 1963:.
A numerical investigation of a nonlinear model of a wind-driven ocean.
J. Atmos. Sci., 20 :594-606.

Bryan, 1969
BRYAN, K., 1969:.
A numerical method for the study of the circulation of the world ocean.
J. Comput. Physics, 4 :347-376.

Bryan and Cox, 1967
BRYAN, K. AND COX, M. D., 1967:.
A numerical investigation of the oceanic general circulation.
Tellus, 19 :54-80.

Connor and Wang, 1974
CONNOR, J. AND WANG, J. D., 1974:.
Finite element modeling of hydrodynamic circulations, pages 355-367.
Numerical Methods Fluid Dynamics. Pentech Press.

Cox, 1979
COX, M. D., 1979:.
A numerical study of somali currents eddies.
J. Phys. Oceanogr., 29 :311-326.

Cox, 1984
COX, M. D., 1984:.
A primitive equation three-dimensional model of the ocean.
Report, GFDL Ocean Group, NOAA, Princeton Univ., Princeton, NJ.

Dengg, 1992
DENGG, J., 1992:.
The problem of Gulf Stream separation: A barotropic approach.
J. Phys. Oceanogr., 22 :2182-2200.

Dietrich et al. , 1993
DIETRICH, D. E., KO, D.-S., AND YESKE, L., 1993:.
On the application and evaluation of the relocatable DieCAST ocean circulation model in coastal and semi-enclosed seas. tech. report 93-1.
Report, Center for Air Sea Technology, Mississippi State University, Building 1103, Stennis Space Center, MS 39529.

Dumas et al. , 1982
DUMAS, E., PROVOST, C. L., AND PONCET, A., 1982:.
Feasibility of finite element methods for oceanic general circulation modelling.
In Proc. 4th Int. Conf. on Finite Elements in Water Resources. Hanover, Germany.

Dunavant, 1985
DUNAVANT, D. A., 1985:.
High degree efficient symmetrical Gaussian quadrature rules for the triangle.
Int. J. for Num. Methods in Eng., 21 :1129-1148.

Ekman, 1905
EKMAN, V. W., 1905:.
On the influence of the earth's rotation on ocean currents, volume 11.
Astr. o. Fysik (Stockholm).
53 pp.

Fix, 1975
FIX, G. F., 1975:.
Finite element models for ocean circulation models.
J. Appl. Math. Model., 29 :371-387.

Foreman et al. , 2000
FOREMAN, M. G. G., THOMSON, R. E., AND SMITH, C. L., 2000:.
Seasonal current simulations for the western continental margin of vancouver island.
J. Geophys. Res., 105 :19665-19698.

Forrer and Jeltsch, 1998
FORRER, H. AND JELTSCH, R., 1998:.
A higher-order boundary treatment for Cartesian-grid methods.
J. Comput. Physics, 140 :259-277.

Fortin and Fortin, 1985
FORTIN, M. AND FORTIN, A., 1985:.
Newer and newer elements for incompressible flow.
Finite Elements in Fluids, 6 :171-187.

Gent, 1993
GENT, P. R., 1993:.
The energetically consistent shallow water equations.
J. Atmos. Sci., 50 :1323-1325.

Gent and McWilliams, 1990
GENT, P. R. AND MCWILLIAMS, J. C., 1990:.
Isopycnal mixing in ocean circulation models.
J. Phys. Oceanogr., 20 :150-155.

Gerdes, 1993
GERDES, R., 1993:.
A primitive equation ocean general circulation model using a general vertical coordinate transformation.
J. Geophys. Res., 98 :14683-14701.

Gill, 1982
GILL, A. E., 1982:.
Atmosphere-Ocean dynamics, volume 30 of International geophysics series.
Academic press.

Greatbatch and Nadiga, 2000
GREATBATCH, R. J. AND NADIGA, B., 2000:.
Four-gyre circulation in a barotropic model with double-gyre wind forcing.
J. Phys. Oceanogr., 30 :1461-1471.

Gresho et al. , 1978
GRESHO, P., LEE, R., AND SANI, R., 1978:.
Advection-dominated flows with emphasis on the consequences of mass-lumping.
Finite Elements in Fluids, 3 :335-350.

Hannah et al. , 2000
HANNAH, C. G., SHORE, J., LODER, J. W., AND NAIMIE, C. E., 2000:.
Seasonal circulation on the western and central scotian shelf.
J. Phys. Oceanogr.
In press.

Hirst and McDougall, 1996
HIRST, A. AND MCDOUGALL, T. J., 1996:.
Deep-water properties and surface buoyancy flux as simulated by a z-corrdinate model including eddy-induced advection.
J. Phys. Oceanogr., 26 :1320-1343.

Holland and Lin, 1975
HOLLAND, W. R. AND LIN, L. B., 1975:.
On the origin of mesoscale eddies and their contribution to the general circulation of the ocean. I. A preliminary numerical experiment.
J. Phys. Oceanogr., 5 :642-657.

Hólm, 1996
OLM, E. V., 1996:.
Energy and enstrophy conservation properties of high-order non-oscillatory advection schemes.
Tellus, 48A :122-137.

Hsieh et al. , 1983
HSIEH, W. W., DAVEY, M. K., AND WAJSOWIZ, R. C., 1983:.
The free Kelvin wave in finite-difference numerical models.
J. Phys. Oceanogr., 13 :1383-1397.

Hua and Thomasset, 1984
HUA, B. AND THOMASSET, F., 1984:.
A noise free finite element scheme for the two layer shallow equations.
Tellus, 36A :157-165.

Hulburt and Hogan, 2000
HULBURT, H. E. AND HOGAN, P. J., 2000:.
Impact of 1/8o to 1/64o resolution on Gulf Stream model-data comparisons in basin-scale subtropical atlantic ocean models.
Dynamics of atmospheres and oceans, 32 :283-329.

Idelsohn et al. , 1995
IDELSOHN, S., STORTI, M., AND NIGRO, N., 1995:.
Stability analysis of mixed finite element formulations with special mention of equal-order interpolations.
Int. J. for Num. Methods in Fluids, 20 :1003-1022.

Ierley and Sheremet, 1995
IERLEY, G. R. AND SHEREMET, V. A., 1995:.
Multiple solutions and advection-dominated flows in the wind-driven circulation. Part I: Slip.
J. Mar. Res., 53 :703-738.

Iskandarani and Haidvogel, 1995
ISKANDARANI, M. AND HAIDVOGEL, D. B., 1995:.
A staggered spectral element model with application to the oceanic shallow water equations.
Int. J. for Num. Methods in Fluids, 20 :393-414.

Ladyzhenskaya, 1969
LADYZHENSKAYA, O. A., 1969:.
The mathematical theory of viscous incompressible flow.
Gordon and Breach.

Le Provost et al. , 1994
LE PROVOST, C., GENCO, M. L., LYARD, F., VINCENT, P., AND CANCEIL, P., 1994:.
Spectroscopy of the world ocean tides from a finite element hydrodynamic model.
J. Geophys. Res., 99 :24777-24798.

Le Provost and Vincent, 1986
LE PROVOST, C. AND VINCENT, P., 1986:.
Some tests of precision for finite element model of ocean tides.
J. Comput. Physics, 65 :273-291.

Le Roux et al. , 1998
LE ROUX, D. Y., LIN, C., AND STANIFORTH, A., 1998:.
Finite elements for shallow-water equation ocean models.
Monthly Weather Review, 126 :1931-1951.

Le Roux et al. , 2000
LE ROUX, D. Y., LIN, C., AND STANIFORTH, A., 2000:.
A semi-implicit semi-Lagragian finite elements shallow-water ocean model.
Monthly Weather Review, 128 :1384-1401.

Lesieur, 1997
LESIEUR, M., 1997:.
Turbulence in fluids, volume 40 of Fluid mechanics and its application.
Kluwer Academic Publishers, 3rd edition.

Lomtev and Karniadakis, 1999
LOMTEV, I. AND KARNIADAKIS, G., 1999:.
A discontinuous Galerkin method for the Navier-Stokes equations.
Int. J. for Num. Methods in Fluids, 29 :587-603.

Lynch and Gray, 1979
LYNCH, D. R. AND GRAY, W. G., 1979:.
A wave equation model for finite element tidal computations.
Comput. Fluids, 7 :201-228.

Lynch and Werner, 1987
LYNCH, D. R. AND WERNER, F. E., 1987:.
3-D hydrodynamics on finite elements. Part I: linearized harmonic model.
Int. J. for Num. Methods in Fluids, 7 :871-909.

Lynch and Werner, 1991
LYNCH, D. AND WERNER, F., 1991:.
3-D hydrodynamics in finite elements. Part II: Non-linear time-stepping model.
Int. J. for Num. Methods in Fluids, 12 :507-533.

Lyness and Jespersen, 1975
LYNESS, J. N. AND JESPERSEN, D., 1975:.
Moderate degree symmetric quadrature rules for the triangle.
J. Inst. Math. Applics., 15 :19-32.

Ma, 1993
MA, H., 1993:.
A spectral element basin model for the shallow water equations.
J. Comput. Physics, 109 :133-149.

Madec et al. , 1991
MADEC, G., CHARTIER, M., DELECLUSE, P., AND CREPON, M., 1991:.
A three-dimensional study of deep-water formation in the northwestern mediterranean sea.
J. Phys. Oceanogr., 21 :1349-1371.

Mavriplis, 1994
MAVRIPLIS, C., 1994:.
Adaptive mesh strategies for the spectral element method.
Comp. meth. in appl. mech. and eng., 116 :77-86.

Munk, 1950
MUNK, W. H., 1950:.
On the wind-driven ocean circulation.
J. Meteor., 7 :79-93.

Myers, 1995
MYERS, P. G., 1995:.
A diagnostic barotropic finite-element ocean circulation model.
J. Atmos. Ocean Tech., 12 :511-526.

Patera, 1984
PATERA, A., 1984:.
A spectral element method for fluid dynamics: laminar flow in channel expansion.
J. Comput. Physics, 54 :468-488.

Pedlosky, 1987
PEDLOSKY, J., 1987:.
Geophysical FLuid Dynamics.
Springer-Verlag.
2nd edition.

Pedlosky, 1996
PEDLOSKY, J., 1996:.
Ocean Circulation theory.
Springer-Verlag.

Peraire et al. , 1986
PERAIRE, J., ZIENKIEWICZ, O. C., AND MORGAN, K., 1986:.
Shallow water problems: a general explicit formulation.
Int. J. for Num. Methods in Eng., 22 :547-574.

Phillips, 1957
PHILLIPS, N, A., 1957:.
A coordinate system having some special advantages for numerical forecasting.
J. Meteor., 14 :184-185.

Pierre, 1988
PIERRE, R., 1988:.
Simple C0 approximations for the computation of incompressible flows.
Computer methods in applied mechanics and engineering, 68 :205-227.

Polzin et al. , 1997
POLZIN, K. L., TOOLE, J. M., LEDWELL, J. R., AND SCHMITT, R. W., 1997:.
Spatial variability of turbulent mixing in the abyssal ocean.
Science, 276 :93-95.

Priestley, 1992
PRIESTLEY, A., 1992:.
The Taylor-Galerkin method for the shallow-water equations on the sphere.
Monthly Weather Review, 120 :3003-3015.

Primeau, 1998
PRIMEAU, F. W., 1998:.
Multiple equilibria of a double-gyre ocean model with super-slip boundary conditions.
J. Phys. Oceanogr., 28 :2130-2147.

Ramp et al. , 1997
RAMP, S. R., MCCLEAN, J. L., COLLINS, C. A., AND SEMTNER, A. J., 1997:.
Observations and modeling of the 1991-1992 El Ninõ signal off central California.
J. Geophys. Res., 102 :5553-5582.

Ritchie and Tanguay, 1996
RITCHIE, H. AND TANGUAY, M., 1996:.
A comparison of spatially averaged Eulerian and semi-Lagrangian treatments of mountains.
Monthly Weather Review, 124 :167-181.

Robert, 1981
ROBERT, A., 1981:.
A stable numerical integration scheme for the primitive meteorological equations.
Amos. Ocean, 19 :35-46.

Roberts et al. , 1996
ROBERTS, M. J., MARSH, R., NEW, A. L., AND WOOD, R. A., 1996:.
An intercomparison of a Bryan-Cox-type ocean model and an isopycnic ocean model. Part I: The subpolar gyre and high latitude processes.
J. Phys. Oceanogr., 26 :1495-1527.

Roberts and Wood, 1997
ROBERTS, M. J. AND WOOD, R. A., 1997:.
Topographic sensitivity studies with a bryan-cox type ocean model.
J. Phys. Oceanogr., 27 :823-836.

Ronquist, 1980
RONQUIST, E. M., 1980:.
Optimal spectral element methods for the unsteady three-dimensional incompressible Navier-Stokes equations.
Phd thesis, Massachusetts Institute of Technology.

Sadourny, 1975
SADOURNY, R., 1975:.
The dynamics of finite difference models of the shallow water equations.
J. Atmos. Sci., 32 :680-689.

Salmon and Talley, 1989
SALMON, R. AND TALLEY, L. D., 1989:.
Generalization of Arakawa's Jacobian.
J. Comput. Physics, 83 :247-259.

Sanderson, 1998
SANDERSON, B., 1998:.
Order ans resolution for computational ocean dynamics.
J. Phys. Oceanogr., 28 :1271-1286.

Schopf and Suarez, 1988
SCHOPF, P. S. AND SUAREZ, M. J., 1988:.
Vacillations in a coupled ocean-atmosphere model.
J. Atmos. Sci., 45 :549-566.

Schwab and Beletsky, 1998
SCHWAB, D. J. AND BELETSKY, D., 1998:.
Propagation of Kelvin waves along irregular coastlines in finite-difference models.
Advances in Water Resources, 22 :239-235.

Scott and Straub, 1998
SCOTT, R. B. AND STRAUB, D. N., 1998:.
Small viscosity behaviour of a homogeneous, quasi-geostrophic, ocean circulation model.
J. Mar. Res., 56 :1225-1258.

Shchepetkin and O'Brien, 1996
SHCHEPETKIN, A. F. AND O'BRIEN, J., 1996:.
A physically consistent formulation of lateral friction in shallow-water equation ocean models.
Monthly Weather Review, 124 :1285-1300.

Sheremet et al. , 1997
SHEREMET, V. A., IERLEY, G. R., AND KAMENKOVICH, V. M., 1997:.
Eigenanalysis of the two-dimensional wind-driven ocean circulation problem.
J. Mar. Res., 55 :57-92.

Sherwin and Karniadakis, 1996
SHERWIN, S. AND KARNIADAKIS, G., 1996:.
Tetrahedal hp finite elements: Algorithms and flow simulations.
J. Comput. Physics, 124 :14-45.

Soares et al. , 1999
SOARES, J., WAINER, I., AND WELLS, N., 1999:.
Reflection of equatorial Kelvin waves at eastern ocean boundaries, part I: hypothetical boundaries.
Ann. Geophysicae, 17 :812-826.

Song and Haidvogel, 1994
SONG, Y. AND HAIDVOGEL, D. B., 1994:.
A semi-implicit ocean circulation model using a generalized topography-following coordinate system.
J. Comput. Physics, 115 :228-244.

Stammer, 1997
STAMMER, D., 1997:.
Global characteristics of ocean variability estimated from regional Topex/Poseidon altimeter measurements.
J. Phys. Oceanogr., 27 :1743-1769.

Staniforth and Côté, 1991
STANIFORTH, A. AND C^OTÉ, J., 1991:.
Semi-Lagrangian integration schemes for atmospheric models -- a review.
Monthly Weather Review, 119 :2206-2223.

Stommel, 1948
STOMMEL, H., 1948:.
The westward intensification of wind-driven ocean currents.
Trans. Amer. Geophys. Union, 29 :202-206.

Straub, 1999
STRAUB, D. N., 1999:.
Comments on quasigeostrophic boundary layers for barotropic ocean circulation models.
In 12th Conference on Atmospheric and Oceanic Fluid Dynamics. American Meteorological Society.

Sverdrup, 1947
SVERDRUP, H. U., 1947:.
Wind-driven currents in a baroclinic ocean; with application to the equatorial currents of the eastern pacific.
In Proc. Natl. Acad. Sci., volume 33, pages 318-326.

Treguier, 1992
TREGUIER, A. M., 1992:.
Kinetic energy analysis of an eddy resolving, primitive equation model of the north atlantic.
J. Geophys. Res., 97 :687-701.

Trochu, 1993
TROCHU, F., 1993:.
A contouring program based on dual kriging interpolation.
Engineering with Computers, 9 :160-177.

Veronis, 1966
VERONIS, G., 1966:.
Wind-driven ocean circulation--part 2. numerical solution of the nonlinear problem.
Deep-sea Res., 13 :31-55.

Wadley and Bigg, 1999
WADLEY, M. AND BIGG, G. R., 1999:.
Implementation of variable time stepping in an ocean general circulation model.
Ocean Modelling, 1 :71-80.

Walters and Cheng, 1979
WALTERS, R. A. AND CHENG, R. T., 1979:.
A two-dimensional hydrodynamic model of a tidal estuary.
Adv. Water Resour., 2 :177-184.

Winton, 1997
WINTON, M., 1997:.
The damping effect of bottom topography on internal decadal-scale oscillations of the thermohaline circulation.
J. Phys. Oceanogr., 27 :203-208.

Winton et al. , 1998
WINTON, M., HALLBERG, R., AND GNANADESIKAN, A., 1998:.
Simulation of density-driven frictional downslope flow in z-coordinate ocean models.
J. Phys. Oceanogr., 27 :2163-2174.

Zhu and Zienkiewicz, 1990
ZHU, J. AND ZIENKIEWICZ, O., 1990:.
Superconvergence recovery technique and a-posteriori error estimators.
Int. J. Numer. Meth. Eng, 30 :1321-1339.

Zienkiewicz and Taylor, 1991
ZIENKIEWICZ, O. C. AND TAYLOR, R. L., 1991:.
The finite element method, volume 2.
McGraw Hill.
4th edition.



Frederic Dupont
2001-09-11